Performance analysis of non-circular microchannels flooded with CuO-water nanofluid

نویسندگان

  • Rajesh GAUTAM
  • Avdhesh K. SHARMA
  • Kapil D. GUPTA
چکیده

In this study the performances of various non-circular microchannel heat sinks (normalized with circular shape) have been comparatively analyzed for CuO-water nanofluid and baseline pure water flow. Nusselt number and Poiseuille number for each microchannel and thermo-physical properties of CuO-water nanofluid (viz., thermal conductivity, viscosity, specific heat and density) have been designed either empirically or from literature. Results for trapezoidal shape gives highest normalized pressure drops among all cases. Thermal performances for constant heat flux and constant wall temperature boundary conditions have been assessed in terms of normalized outlet wall temperature and normalized heat exchange rate. Results show that when thermal performance of any microchannel heat sink (MHS) improves, the hydraulic performance deteriorates. Trapezoidal microchannel gives best thermal performance in terms of normalized heat exchange rate specially with CuO-water nanofluids flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO/water Nanofluid Convective Heat Transfer Through Square Duct Under Uniform Heat Flux

Sometimes the need for non-circular ducts arises in many heat transfer applications because of lower pressure drop of non-circular cross section such as square duct compared to circular tube, particularly in compact heat. But square cross section has poor heat transfer performance and it is expected that using a nanofluid as a new heat transfer media may improve the heat transfer performance of...

متن کامل

Thermal performance enhancement of automobile radiator using water-CuO nanofluid: an experimental study

In the present paper, the effect of water-CuO nanofluid on the radiator heat transfer of an automobile, Peugeot 405 XU7 engine type is investigated experimentally. The experiments are carried out for the radiator water (water-ethylene glycol with a volume fraction of 80-20, respectively) as a base fluid and water-CuO nanofluid with the volume fraction of 0.5% and 1%. Sodium Dodecyl Sulfate (SDS...

متن کامل

Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid using Double Pipe Heat Exchanger

Experimental investigations of heat transfer coefficient of CuO/Water nanofluid are reported in this paper. The heat transfer coefficient of the CuO/water was measured with the help of double pipe heat exchanger. The nanofluid was prepared by dispersing a CuOnano particle in deionized water. CuO/water nanofluid with a nominal diameter of 27nm at different volume concentrations (0.1 &0.3 vol.%) ...

متن کامل

Investigation of Brownian Motion of CuO-Water Nanofluid in a Porous Cavity with Internal Heat Generation by Using of LTNE Model

In this paper, the effect of the Brownian term in natural convection of CuO-Water nanofluid inside a partially filled porous cavity, with internal heat generation has been studied. It is assumed that the viscosity and thermal conductivity of nanofluid consists of a static part and a Brownian part of which is a function of temperature and the volume fraction of nanofluid. Because of internal hea...

متن کامل

The numerical study of heat transfer of water-TiO2 nanofluid in the ‎triangular microchannels with semiattached and offset mid-truncated ‎rib,s‎

  In this numerical study the the heat transfer and laminar nanofluid flow in the three-dimensional microchannels with triangular cross-section is simulated. For increase the heat transfer from the walls of the channel, semiattached & offset mid- truncated rib,s Placed in the canal, and the tooth geometry and the impact is studied. In this study, the water is base fluid, and the influence of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012